Construction of time operators associated with Schrödinger operators

Fumio Hiroshima

Kyushu Univ.

joint work with Asao Arai (Hokkaido Univ.) December 1, 2016 PNU Math forum

CCR representations and time operators

- 2 Hierarchy of time operators
- Absolutely continuous spectrum and strong time operators
- 4 Discrete spectrum and ultra-weak time operators
- 5 Summary

Let $[\cdot,\cdot]$ be the commutator defined by

$$[A,B] = AB - BA$$

for linear operators A and B on a vector space D.

• **Example** 1: For *d*-dimensional matrices *S* and *T*,

$$[S,T] \neq O.$$

• **Example** 2: For differential operator ∂x and the multiplication operator *x*, since $\partial xxf = x\partial xf + f$, we have

$$[\partial x, x] = 1.$$

Let A and B be linear operators on a complex Hilbert space \mathcal{H} ,

satisfying the canonical commutation relation (CCR)

$$[A,B] = -i1$$

on a dense subspace

 $\mathscr{D} \subset D(AB) \cap D(BA)$

● We call 𝒴 a CCR-domain for the pair (*A*, *B*).
● (ℋ, 𝒷, {*A*, *B*}) is called a representation of CCR

Extension to *d*-degree system

Let A_j and B_j be linear operators on \mathcal{H} , and dense $\mathcal{D} \subset \mathcal{H}$ such that

$$\mathscr{D} \subset \cap_{j,k=1}^d [D(A_j B_k) \cap D(B_k A_j) \cap D(A_j A_k) \cap D(B_j B_k)].$$

Then

$$(\mathscr{H}, \mathscr{D}, \{A_j, B_j | j = 1, \dots, d\})$$

is also called a representation of CCR if

$$[A_j, B_k] = -i\delta_{jk}1, \quad [A_j, A_k] = 0 = [B_j, B_k]$$

hold on \mathcal{D} .

Example

$$P_j = -i\partial x_j, Q_i = x_i imes.$$

Example 1 $[P_j, Q_{j'}] = -i\delta_{jj'}1, 1 \le j, j' \le d$
Example 2 $[-\frac{1}{2}\sum_j P_j^2, T_{AB}] = -i1$, where

$$T_{AB} = \frac{1}{2} \sum_{j} \left(\frac{1}{P_j} Q_j + Q_j \frac{1}{P_j} \right)$$

Example 3 $[f(P), T_f] = -i1$, where

$$T_f = \frac{1}{2} \sum_j \left(\frac{1}{\partial_j f(P)} Q_j + Q_j \frac{1}{\partial_j f(P)} \right)$$

Example 4 $[\sqrt{P^2 + 1}, T] = -i1, T = \cdots$.

One may infer that self-adjoint operator H may have a symmetric operator T corresponding to time, satisfying CCR

$$[H,T_H]=-i1.$$

Such an operator T_H is called a **time operator** of *H*.

Difficulty

Let
$$H\phi = E\phi$$
. Then $[H,T]\phi = (H-E)T\phi = -i\phi$ and

$$T\phi = -i(H-E)^{-1}\phi?$$

Thus $\phi \notin D(T)$ for any e.v. ϕ of *H*.

Hierarchy of time operators

[Weyl relation] A pair (A,B) consisting of self-adjoint operators A and B is called a weak Weyl representation if the **Weyl relations** holds:

$$e^{-itA}e^{-isB}\psi = e^{ist}e^{-isB}e^{-itA}\psi$$
 $t, s \in \mathbb{R}$

[Weak Weyl relation] A pair (A, B) consisting of a self-adjoint operator A and symmetric operator B is called a **weak Weyl representation** if

$$e^{-itA}D(B) \subset D(B) \quad Be^{-itA}\psi = e^{-itA}(B+t)\psi$$

holds for all $\psi \in D(B)$ and all $t \in \mathbf{R}$.

Important

Weyl relation \implies weak Weyl relation \implies CCR

Definition (Ultra-strong time operator)

A self-adjoint operator *T* is called a **ultra-strong time operator** of *H* if (H,T) is a Weyl representation.

Definition (Strong time operator)

A symmetric operator *T* is called a **strong time operator** of *H* on \mathcal{H} if (H,T) is a weak Weyl representation.

[Remark1] Let $H > \infty$ and T be the strong time operator of H. Then T has no self-adjoint extension!

[Remark2] Let *T* be a strong time operator of *H*. Then $\sigma(H)$ is purely absolutely cont. In particular if *H* has an eigenvalue, then *H* has no strong time operator.

Definition (weak time operator)

A symmetric operator *T* is called a **weak time operator** of *H* if a dense subspace $\exists \mathscr{D}_w \subset D(T) \cap D(H)$ s.t.

$$(H\phi, T\psi) - (T\phi, H\psi) = -i(\phi, \psi), \quad \phi, \psi \in \mathscr{D}_{\mathrm{w}}.$$

We call \mathscr{D}_{w} a weak-CCR domain for the pair (H, T).

Definition (Ultra-weak time operator)

Let \mathscr{D}_1 and \mathscr{D}_2 be dense subspaces of $\mathscr{H}.$ A sesquilinear form

 $\mathfrak{t}:\mathscr{D}_1\times\mathscr{D}_2\to C$

is called a **ultra-weak time operator** of *H* if dense subspaces $\exists \mathscr{D}, \exists \mathscr{E} \subset \mathscr{D}_1 \cap \mathscr{D}_2$ such that (i)–(iii) hold:

- (i) $\mathscr{E} \subset D(H) \cap \mathscr{D}$,
- (ii) $\mathfrak{t}[\phi,\psi]^* = \mathfrak{t}[\psi,\phi], \phi, \psi \in \mathscr{D},$
- (iii) $H\mathscr{E} \subset \mathscr{D}_1$

$$\mathfrak{t}[H\phi,\psi]-\mathfrak{t}[H\psi,\phi]^*=-i(\phi,\psi)\quad\psi,\phi\in\mathscr{E}.$$

We call \mathscr{E} an ultra-weak CCR-domain for (H, \mathfrak{t}) and \mathscr{D} a symmetric domain of \mathfrak{t} .

Remark

Weak time operator \subset ultra weak time operator

• Let *T* be a weak time operator of *H*. • $\mathfrak{t}_T : \mathscr{H} \times D(T) \to \mathbb{C}$ defined by

$$\mathfrak{t}_T[\phi,\psi] = (\phi,T\psi), \quad \phi \in \mathscr{H}, \psi \in D(T).$$

• t_T is an ultra-weak time operator of *H*.

Remark

Weak time operator \subset ultra weak time operator

• Let *T* be a weak time operator of *H*. • $t_T : \mathscr{H} \times D(T) \to \mathbb{C}$ defined by

$$\mathfrak{t}_T[\phi,\psi] = (\phi,T\psi), \quad \phi \in \mathscr{H}, \psi \in D(T).$$

• \mathfrak{t}_T is an ultra-weak time operator of H.

5 classes of time operators

ultra-strong time c strong time time ultra-weak time

Idea of constructing time operator of H

The purpose of my talk is to find ultra-weak time operator of

$$H = \frac{1}{2}\sum_{j=1}^{d} P_j^2 + V(Q) = H_{ac} \oplus H_{sc} \oplus H_p.$$

- *T_{ac}*: strong time operator of absolutely cont. part *H_{ac}* (scattering theory).
- \mathfrak{t}_p : ultra weak time operator of point spectrum part: H_p .
- The absence of singular cont. part: *H_{sc}*.

Then

$$T_{ac}$$
"+" \mathfrak{t}_p

is an ultra weak time operator of H.

Absolutely continuous spectrum and strong time operators

Scattering theory

Let $H_0 = \frac{1}{2} \sum_j P_j^2$. Under some condition on *V* we have $H_0 = UH_{ac}U^{-1}$ with some unitary operator (wave operator) *U*.

 $[H_0, T_{AB}] = -i1$

Theorem (Arai (06), Strong time operators)

 $T'_{AB} = U^{-1}T_{AB}U$ is a strong time operator of H_{ac} . I.e.,

$$[H_{ac},T'_{AB}]=-i1.$$

Discrete spectrum and ultra-weak time operators

How can we construct a time operator of H_p ?

Galapon(02), Arai-Matsuzawa(08)

Let $\{e_n\}_{n=1}^{\infty}$ be a complete orthonormal bases. Suppose that $\sigma(H) = \{E_j\}_{j=1}^{\infty}$, every E_j is *simple*, and $\sum_{j=1}^{\infty} \frac{1}{E_j^2} < \infty$. Then

$$T\phi = i\sum_{n=1}^{\infty} \left(\sum_{m \neq n} \frac{(e_m, \phi)}{E_n - E_m}\right) e_n$$

is a time operator of *H*. I.e., $[H,T]\phi = -i\phi$.

Discrete spectrum and ultra-weak time operators

How can we construct a time operator of H_p ?

Galapon(02), Arai-Matsuzawa(08)

Let $\{e_n\}_{n=1}^{\infty}$ be a complete orthonormal bases. Suppose that $\sigma(H) = \{E_j\}_{j=1}^{\infty}$, every E_j is *simple*, and $\sum_{j=1}^{\infty} \frac{1}{E_i^2} < \infty$. Then

$$T\phi = i\sum_{n=1}^{\infty} \left(\sum_{m \neq n} \frac{(e_m, \phi)}{E_n - E_m}\right) e_n$$

is a time operator of *H*. I.e., $[H,T]\phi = -i\phi$.

Ultra-weak time operator of the case $\sigma(H) = \sigma_{disc}(H) = \{E_n\}_{n=1}^{\infty}$

• $[E_n \to \infty]$ Let $\lim_{n\to\infty} E_n = \infty$. Then time operator $\exists T$ of H.

• $[E_n \to 0]$ Let $E_n < 0$, $\lim_{n\to\infty} E_n = 0$ and $0 \notin \sigma_p(H)$. Then ultra weak time operator $\exists T$ of H.

Definition (class $S(\mathcal{H})$)

A self-adjoint operator H on \mathcal{H} is said to be in the class $S(\mathcal{H})$ if it has the following properties (H.1)–(H.4):

- (H.1) $\sigma_{\rm sc}(H) = \emptyset$.
- (H.2) $\sigma_{ac}(H) = [0,\infty).$
- (H.3) $\sigma_{\text{disc}}(H) = \sigma_p(H) = \{E_n\}_{n=1}^{\infty}, E_1 < E_2 < \dots < 0, \lim_{n \to \infty} E_n = 0$ (hence $0 \notin \sigma_p(H)$).
- (H.4) There exists a strong time operator T_{ac} of H_{ac} in $\mathcal{H}_{ac}(H)$.

Theorem (Arai-H.(16) Ultra-weak time operator of *H*)

Let $H \in S(\mathscr{H})$. Then $\exists \mathfrak{t}_H$ ultra-weak time operator

Proof: $H = H_p \oplus H_{ac}$. • By (H.3), H_p has an **ultra-weak time op**. t_p such that $\mathfrak{t}_p[H_p\phi,\psi] - \mathfrak{t}_p[\phi,H_p\psi] = -i(\phi,\psi), \quad \phi,\psi \in \exists \mathscr{E}_p.$ **•** By (H.4), H_{ac} has a strong time operator T_{ac} such that $[H_{ac}, T_{ac}] = -i1$ • $\mathbf{t}_H : (\mathscr{H}_{ac}(H) \oplus \mathscr{D}_p) \times (D(T_{ac}) \oplus \mathscr{D}_p) \to \mathbf{C}$ by $\mathfrak{t}_{H}[\phi_{1}\oplus\phi_{2},\psi_{1}\oplus\psi_{2}]=(\phi_{1},T_{ac}\psi_{1})+\mathfrak{t}_{p}[\phi_{2},\psi_{2}].$

Example (Agmon potential)

Let $d \ge 3$. Suppose that $U \in L^{\infty}(\mathbb{R}^3)$. Then

$$V(x) = \frac{U(x)}{(1+|x|^2)^{1/2+\varepsilon}}$$

is an Agmon potential for all $\varepsilon > 0$. Suppose that *U* is negative, continuous, spherically symmetric and satisfies that $U(x) = -1/|x|^{\alpha}$ for |x| > R with $0 < \alpha < 1$ and R > 0. Let $2\varepsilon + \alpha < 2$. Then *H* has an ultra-weak time operator.

Example (hydrogen atom)

The hydrogen Schrödinger operator $H_{hyd} = -\Delta - \gamma/|x|$ is self-adjoint with $D(H_{hyd}) = D(H_0)$. The Coulomb potential $-\gamma/|x|$ with d = 3 is not an Agmon potential. But we can show that H_{hyd} has an ultra-weak time operator.

(1) We construct an ultra-weak time operator t of $H = \frac{1}{2}P^2 + V(Q)$:

$$\mathfrak{t}(H\phi,\psi)-\mathfrak{t}(H\psi,\phi)^*=-i(\phi,\psi)$$

(2) t is **densely** defined. (3-1) We assume $\sigma_{sc}(H) = \emptyset$ and $0 \notin \sigma_p(H)$. (3-2) We assume $\#\sigma_{disc}(H) = \infty$ or $\#\sigma_{disc}(H) = 0$. (4) H_{hyd} is included in our results.

Reference: A. Arai and F. Hiroshima, Ultra-Weak Time Operators of Schrödinger Operators, arXiv:1607.04702, 2016